

The GSMA is a global organisation unifying the mobile ecosystem to discover, develop and deliver innovation foundational to positive business environments and societal change. Our vision is to unlock the full power of connectivity so that people, industry and society thrive. Representing mobile operators and organisations across the mobile ecosystem and adjacent industries, the GSMA delivers for its members across three broad pillars: Connectivity for Good, Industry Services and Solutions, and Outreach. This activity includes advancing policy, tackling today's biggest societal challenges, underpinning the technology and interoperability that make mobile work, and providing the world's largest platform to convene the mobile ecosystem at the MWC and M360 series of events.

We invite you to find out more at gsma.com

Follow the GSMA on Twitter: @GSMA

Intelligence

GSMA Intelligence is the definitive source of global mobile operator data, analysis and forecasts, and publisher of authoritative industry reports and research. Our data covers every operator group, network and MVNO in every country worldwide – from Afghanistan to Zimbabwe. It is the most accurate and complete set of industry metrics available, comprising tens of millions of individual data points, updated daily.

GSMA Intelligence is relied on by leading operators, vendors, regulators, financial institutions and third-party industry players, to support strategic decision-making and long-term investment planning. The data is used as an industry reference point and is frequently cited by the media and by the industry itself.

Our team of analysts and experts produce regular thought-leading research reports across a range of industry topics.

www.gsmaintelligence.com

info@gsmaintelligence.com

@GSMAi

Authors

Emanuel Kolta, Lead Analyst, GSMA Intelligence Tim Hatt, Head of Research and Consulting, GSMA Intelligence

Steven Moore, Head of Climate Action, GSMA

Contents

Executive summary	4
1. Project rationale	6
2. Methodology	8
Selection of a comparable KPI	8
Normalisation	8
Regression analysis	9
3. Benchmarking results	10
Categorising energy consumption	10
Findings	11
Consumption	11
Efficiency	11
Fuel sources: renewables versus diesel	
4. Outlook and implications	14
How to build and operate an energy-efficient cellular network	14
Passive infrastructure	15
Sustainable 5G	17
Measuring energy efficiency in the 5G era	18
The value of partnerships	19
Climate targets	19
5. How to get involved	21
Appendix	22
Normalisation	22
Key factors influencing energy efficiency	22
Glossary	24

Executive summary

Background

Sustained cost pressures and commitments to net zero in support of the 2015 Paris Agreement have made energy efficiency a strategic priority for many telecoms operators around the world. This is compounded by data traffic rises associated with LTE and 5G migration. To help provide an evidence base for measuring progress, we partnered with a group of operators to develop a Mobile Energy Efficiency Benchmarking tool. The tool is based on real-world data inputs from operators on a fully anonymised basis to quantify network energy consumption and efficiency levels, and fuel sources.

GSMA Intelligence is grateful for the 10 operator groups that participated in the project: Airtel Africa, Airtel India, Axiata, Chunghwa Telecom, Deutsche Telekom, Etisalat, CK Hutchison Group Telecom, Reliance Jio, Zain and Tigo (the first network operator in the Americas to join the initiative). The 10 operators not only provided data about 58 networks in 56 countries but also actively participated in workshops and provided useful insights for this report. Overall, these operators serve almost 1.3 billion connections globally, representing 16% of total cellular connections.

Highlights

Our modelling and analysis resulted in a number of findings at a global level in 2021:

- 87% of the energy of the participating operators is consumed in the radio access network (RAN). The network core and owned data centres (12%) and other operations (1%) account for the rest.
- In the markets covered, the average primary energy efficiency ratio in the RAN reached 6.86 GB/kWh in 2021. According to our dataset, this also indicates that operators used on average 0.13 kWh of energy to transfer 1 GB of data across their RAN networks.
- In terms of other RAN efficiency ratios, one mobile connection required an average of 17 kWh of energy during the 12 months in other words, 0.06 connections/kWh while one cell network site used on average 26,420 kWh during the whole year.
- On average, 83% of operators' energy came from fossil fuels via the electricity grid, 9% came from renewables and the remaining 8% came from diesel (which is more concentrated in developing regions where grid and renewables access is less prevalent).
- Participating operators used 77% of their total energy in the active infrastructure and only 23% was consumed in the passive infrastructure, to support, defend and supply the active network elements.

Going green: benchmarking the energy efficiency of mobile networks (second edition)

These figures are averages from a specific subset of operators. Even within the sample group, there is significant variation – and this would apply to the industry overall too. The results should therefore be interpreted at a high level rather than be predictive for any one country or operator.

Next steps

2022 was the second year of tracking energy efficiency by GSMA intelligence. We intend to extend this into a multi-year study with a wider group of industry participants to increase the representativeness and direct applicability of the research. GSMA Intelligence hopes that the benchmark will aid best-practice guidance on the rationale and means of becoming more energy efficient, given this is an industry-wide rather than company-specific challenge.

1. Project rationale

Sustained cost pressures and commitments to net zero in support of the 2015 Paris Agreement have made energy efficiency a strategic priority for many telecoms operators around the world. This is a long-term story. As mobile data traffic continues to grow dramatically with the rise of LTE smartphones and the expansion of 5G, energy consumption is consequently increasing. To help provide an evidence base for measuring progress, we partnered with a group of operators to develop the Mobile Energy Efficiency Benchmarking tool. The tool is based on real-world data inputs from operators on a fully anonymised basis to quantify network energy consumption and efficiency levels, allowing for comparisons at the network and regional levels.

The research is set against a context of broader efforts to help tackle climate change and embed sustainable business practices into the telecoms industry and its supply chain:

- The <u>GSMA Climate Action Taskforce</u> which now has more than 60 operators globally as members – shares, promotes and works together on climate topics such as energy efficiency, renewables, supplier engagement and using connectivity for climate mitigation and adaptation.
- To help the industry move towards a more sustainable future, the GSMA has developed a
 <u>Sustainability Assessment Framework</u> to better understand the landscape of operator
 efforts in social and environmental sustainability.

10 operators participated in this project: Airtel Africa, Airtel India, Axiata, Chunghwa Telecom, Deutsche Telekom, e&, CK Hutchison Telecom Group, Tigo, Reliance Jio and Zain. The data provided by these groups spans 58 networks in 56 countries.

Figure 1: Countries included in the Mobile Energy Efficiency Benchmarking 2022 project

Source: GSMA Intelligence

Based on a range of energy-related metrics and more than 2,800 data points gathered, we derived insights on:

- energy efficiency
- diesel versus renewable energy usage
- consumption distribution across different parts of an operator network (RAN, core network and data centres, and operations related to mobile networks)
- 5G's energy efficiency
- active and passive infrastructure.

2. Methodology

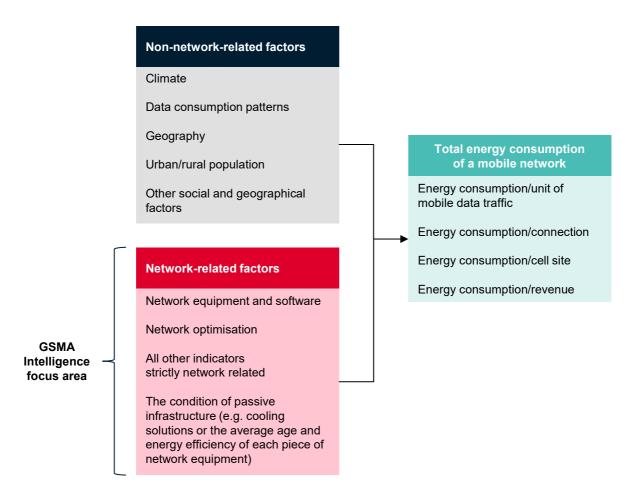
Selection of a comparable KPI

The goal of the Mobile Energy Efficiency Benchmarking tool is to help operators measure the relative efficiency of their networks. The basic principle of efficiency is simple: how much energy is needed to deliver one unit of output. In the context of mobile networks, this means the amount of energy needed to transmit 1 GB of data (voice also requires energy but its load is negligible compared to data). However, measuring energy efficiency can be carried out in various ways.

Based on the standard of ITU-T and the European Telecommunications Standards Institute (ETSI), mobile network data energy efficiency is the ratio between the data volume and the energy consumption during the same period. Thus, the metric for energy efficiency is useful output over energy consumption.¹ A mix of KPIs can help operators measure the relative efficiency of their networks in the era of multi-generational networks, including 2G, 3G, 4G and 5G. Four KPIs combined can provide a comprehensive evaluation of network-level energy efficiency:

- data traffic per unit of energy consumption
- number of connections per unit of energy consumption
- number of cell sites per unit of energy consumption
- revenue per unit of energy consumption.

Each measure has its pros and cons, so the exercise of selection becomes a question of balance. We have primarily chosen the first method – data traffic per unit of energy consumption – as it is the most easily comparable and meaningful KPI to monitor over time.


Normalisation

Comparing multiple networks in different countries with different characteristics – such as climate, population density and data consumption levels – is a complex task. To normalise the results and allow like-for-like comparisons, we divided the explanatory variables into:

- non-network-related variables those outside the operator's control (e.g. population distribution and climate)
- network-related factors those within the sphere of control of the operator.

¹ The ITU defines energy efficiency and explains the recommended methods to measure energy efficiency in more detail in <u>Energy efficiency measurement and metrics for telecommunication networks</u>.

Figure 2: Factors affecting energy usage

Source: GSMA Intelligence

Regression analysis

Data inputs from the participating operators include energy usage, data traffic, number of cell sites and fuel consumption split between diesel and renewables. To avoid seasonality and outlier periods, the data covers the full-year period of 2021. After normalisation, we ran a regression analysis of variables against energy consumption to understand which have the highest correlations. Conclusions were then drawn on benchmark levels for energy consumption, fuel sourcing and efficiency ratios.

See the Appendix for more details on our methodology.

3. Benchmarking results

Categorising energy consumption

The direct energy consumption of the operators can be categorised into three groups:

- RAN energy consumption: This comprises energy consumed by the RAN, which includes BTS, Node B, eNodeB and gNodeB energy usage and all associated infrastructure energy usage such as from air-conditioning, inverters and rectifiers. It includes energy usage from repeaters and all energy consumption associated with backhaul transport. It excludes picocell, femtocell and core network energy usage, as well as mobile radio services.
- Core and data centre energy consumption:² This comprises energy consumed by the core network and data centres related to the mobile network, which are the physical sites that host operators' IT, including OSS and BSS and intranet infrastructure. Our analysis only includes energy consumption for data centres owned by an operator; it does not include energy consumption related to leased or outsourced capacity from web-scale providers such as AWS, Microsoft and Google. It also includes all energy consumption associated with backhaul transport.
- **Other operations**: This comprises energy consumed by the mobile operator for its own operations. This includes offices, shops, retail activity and logistics.

² After the first year of this study, we decided to combine the core network and data centre energy consumption categories. Driven by digital transformation, especially virtualisation, many operators cannot separate their core and data centre energy consumption as they previously could. These functions have been collocated together and electricity consumption metering can no longer be separated.

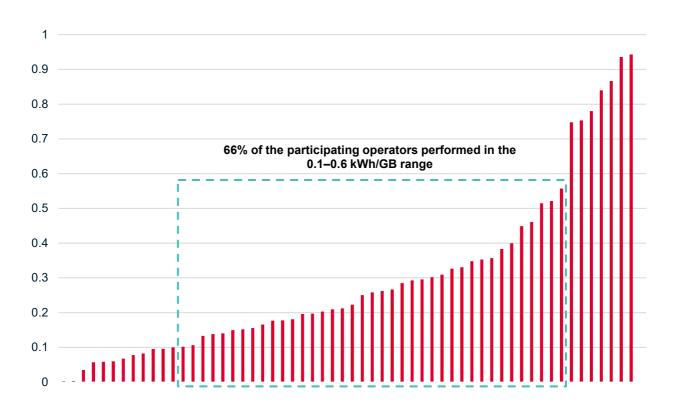
RAN **Operations** RAN Offices, retail shops Centralised/distributed RAN unit Data centres (₽) (♠) Network elements, energy sourcing, Network batteries, security, shelter

Figure 3: Where mobile operators use energy in their network operations

Source: GSMA Intelligence

Findings

Consumption


- The majority of energy (87%) is consumed in the RAN. Providing coverage across thousands of square kilometres, transforming energy into radio waves, and receiving and processing incoming signals are still energy-intensive functions.
- The remaining distribution of consumption comprises data centres and core network (12%) and operations (1%).

Efficiency

- Energy efficiency was measured primarily using the data traffic per unit of energy consumption ratio across the RAN. In the markets covered, this averaged 6.86 GB/kWh during 2021. According to our dataset, this also indicates that operators used on average 0.13 kWh of energy to transfer 1 GB of data in their RAN network. GSMA Intelligence also used three secondary efficiency ratios, which aimed to measure energy efficiency from different angles:
 - Connections (0.06 connections/kWh): For the 56 markets covered, one mobile connection required an average of 17 kWh of energy in the RAN during the 12month period.

- Sites (0.136 cell site/kWh): On average, one network site used 26,420 kWh for the same one-year period.
- Revenue in Euros (2.73 EUR/kWh): From a financial point of view, one network operator used on average 366 MWh of energy to generate €1 million in revenue.
- It is worth noting that the above values are averages and the standard deviation is high, sometimes as much as 20×. Furthermore, as the list of the participating operators changed significantly, we could not present any scientifically evaluable result in terms of year-on-year change. The number of networks that participated in both years was too low for the results to be representative.
- Of the participating operators, 66% performed in the 0.1–0.6 kWh/GB range (see Figure 4), meaning that most of the included networks used 0.1–0.6 kWh to transfer 1 GB of data.
 Values outside of this range can be explained by inefficient networks, consumer habits or low data traffic per connection.

Figure 4: Overall energy efficiency of participating operators kWh/GB

Participating network operators (anonymized, arranged in order)

Source: GSMA Intelligence

Fuel sources: renewables versus diesel

- 83% of the total energy consumption came from conventional grid supply, 9% from renewables and 8% on-site via diesel generators.
- Diesel usage is more concentrated in developing regions where grid and renewable electricity access is less prevalent. Despite operators being at the forefront of the use of renewables, they need an immediately available energy source in bad-grid, off-grid and hard-to-reach areas to provide critical infrastructure in developing regions and bridge the digital divide for underserved communities.
- Renewables are mostly purchased via certified energy suppliers. While solar is becoming
 more price competitive, self-generated renewable electricity is still outside of operators'
 comfort zone. Directly produced solar accounts for less than 1% of total energy
 consumption.
- Diesel usage is more common in South Asia, the Middle East and Sub-Saharan Africa. However, even in Europe, it accounts for 1–5% of consumption. The network that used the most diesel, on a relative basis, is in South Asia. The network with the second-highest usage of diesel is in the Middle East, which was followed by a number of African networks. Diesel usage is not a region-specific trend but rather related to electricity grid conditions.
- European operators are at the forefront of renewables usage. European network operators
 can access renewable energy more easily via the grid and many have set ambitious goals.
 Some already have network operations powered 100% by electricity from renewable
 sources.

4. Outlook and implications

The findings and implications from the benchmark analysis should be interpreted in the context of several broad shifts in the sustainability arena. We outline these below.

How to build and operate an energy-efficient cellular network

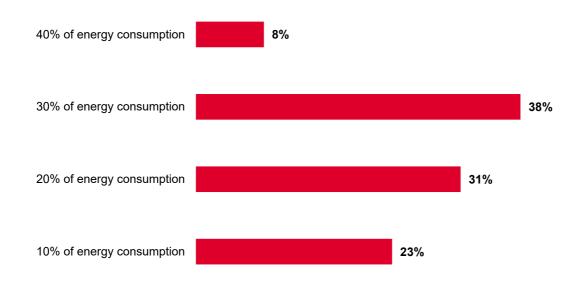
In general, an energy-efficient wireless network is built on site simplicity and advanced passive cooling technologies, frequently harvesting data from almost every part of the network and turning them into actionable insights. An energy-efficient network takes advantage of the improved characteristics of the purpose-built network elements and uses about as much energy as needed at the moment without impacting user experience. The separate equipment on site and the number of site visits are also limited to a minimum. Further, network elements are improving their energy efficiency day by day due to frequent software updates. The combination of these factors can help operators to build a future-proof, energy-efficient and sustainable network that improves their overall competitiveness and satisfies their customers.

GSMA Intelligence identified five main areas where operators can improve their energy efficiency (see Figure 5).

Figure 5: Most effective improvements for energy efficiency

Site simplification and physical modernisation	Using lean site designs, simplified sites with pooled baseband units and multi-generational equipment, and avoiding shelter or cabinets can all help to improve overall energy efficiency.
Spectrum refarming and user migration	As legacy wireless technologies approach the end of their lifecycle, refarming valuable spectrum and migrating users to newer technologies can significantly improve energy efficiency.
Highly integrated hardware	The use of highly integrated radio devices and ultra- wideband AAUs can help operators to use shared power modules and decrease cable loss.
Advanced cooling solutions	Prioritising outdoor equipment placement and passive thermal management, and reducing site complexity and cable loss can improve overall energy efficiency.
Al and resource optimisation	Symbol, channel and carrier shutdown, real-time analysis and cross-cell optimisation can all help operators to use their energy resources in a more efficient manner.

Source: GSMA Intelligence


Passive infrastructure

The role of passive infrastructure is to support, defend and supply the active network elements. There are significant variations between mobile sites, the regulatory and physical environments they operate in and the traffic load experienced, based on country or location, so improving the energy efficiency of passive infrastructure can be a complex and labour-intensive task. Also, depending on the climate and the quality of the electricity grid, passive infrastructure (especially air-conditioning) can be responsible for a significant part of operators' energy use, meaning the stakes can be high.

During the Mobile Energy Efficiency Benchmarking 2022 project, GSMA intelligence asked participating operators what proportion of their energy consumption is related to passive infrastructure. Based on this, on average, 23% of the total energy is spent on passive infrastructure and the remaining 77% is consumed in the active infrastructure.

Figure 6: The role of passive infrastructure

What percentage of your total energy consumption is related to the passive infrastructure? (Percentage of operators)

Source: GSMA Intelligence Workshop Operator Survey 2022

We also asked the participating operators about the biggest bottlenecks to improving energy efficiency in the passive infrastructure. The majority of operators were in agreement on the top three bottlenecks: capex intensity, available space on site and vandalism. During the workshops, network operators also pointed to the inflexibility of landlords, the poor condition of the electricity grid, lack of internal experience and administrative permits as bottlenecks.

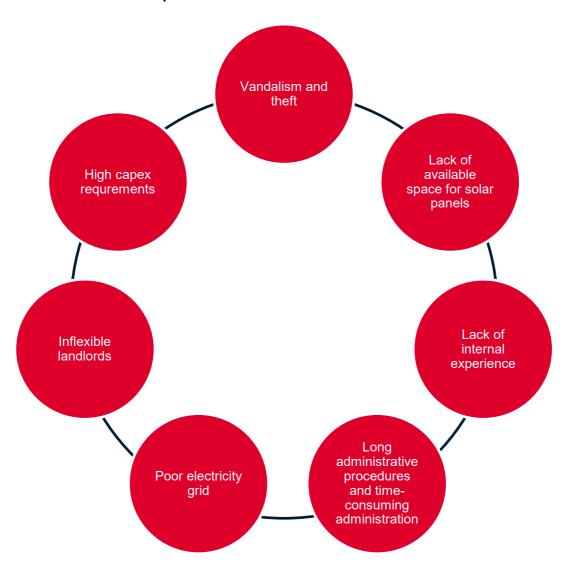


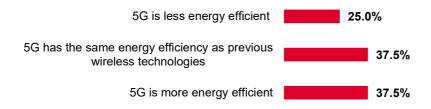
Figure 7: The bottlenecks of passive infrastructure

Source: GSMA Intelligence Workshop Operator Survey 2022

Back in the 2G and 3G eras, when many operators used general-purpose passive network elements (batteries, air-conditioning, rectifiers etc.), equipment vendors introduced purpose-built products. General-purpose equipment is less efficient and also needs more maintenance. Such equipment may also simply not be feasible because mobile operators have unique needs, including:

- special insulation to avoid dust, heavy rain and exterior temperature effects
- · anti-theft and vandalism features
- high-capacity fuel tanks, automatic oil and fuel refilling, and sensors for the generator to avoid frequent refill and maintenance site visits
- special lightning protection systems because mobile sites are taller than their surroundings.

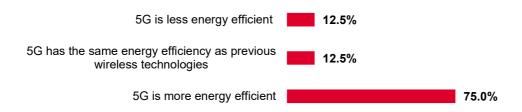
Sustainable 5G


As 5G becomes more pervasive, the energy consumption demand on mobile networks will rise. Energy-saving measures built into the 5G new radio (NR) standard may be offset by rising data traffic, resulting in overall higher levels of energy consumption and emissions. However, the energy strategies of operators take a holistic perspective that includes retiring legacy networks, using more renewables and buying power-efficient equipment.

Each wireless technology generation is more energy efficient than its predecessor – but 5G is the first cellular technology designed to be more energy efficient and sustainable. Energy efficiency improved by severalfold from 3G to 4G and it improved even more from 4G to 5G. Thus, encouraging users to migrate from 2G/3G to 4G/5G will significantly improve efficiency and reduce both energy consumption and carbon emissions.

During the workshops, GSMA Intelligence asked operators about their experience with 5G deployments (see Figures 8 and 9). Despite 5G's theoretical energy efficiency being well known, we wanted to have a deeper understanding of the real-life experience of the operators in the short and long terms, too.

Figure 8: 5G's energy efficiency in the short term


What is the impact of 5G on overall energy efficiency in the short term? (Percentage of respondents)

Source: GSMA Intelligence Workshop Operator Survey 2022

Figure 9: 5G's energy efficiency in the long term

What is the impact of 5G on overall energy efficiency in the long term? (Percentage of respondents)

Source: GSMA Intelligence Workshop Operator Survey 2022

The results indicate that operators' real-life experience supports the statement that 5G is more energy efficient in the long run. However, this energy efficiency is not necessarily perceptible immediately. This temporary inconsistency can be caused by mainly two factors:

- A whole new 5G layer is introduced and a relatively small number of connections are using the layer in the beginning. After 5G penetration increases and the number of connections reaches the critical mass, 5G's superior energy efficiency becomes palpable.
- After operators introduce a new network layer, there is a transitional period while the
 engineers optimise the network performance and gain enough knowledge to operate the
 new 5G layer efficiently.

An earlier GSMA Intelligence report³ provided an overview of efficiency strategies. The benchmark analysis presented in the current report is complementary and will need to be updated over time to account for the mixed effect in the mobile customer base that will gradually increase in favour of 5G.

Measuring energy efficiency in the 5G era

In the process of exploring energy-efficiency improvements for mobile operators, one of the greatest challenges is figuring out how to effectively and scientifically implement network energy-efficiency index management. The first step is to fully understand the requirements of 'metric metering', which comprises a set of mechanisms and methods that include the whole process of measurement, reporting, analysis, presentation, policy formulation and optimisation suggestions. This can help operators build a standardised, intelligent and visual management system of energy efficiency.

In terms of indicator measurement and reporting standardisation, standard sampling points and sampling frequencies can be defined for the hierarchical architecture of mobile and fixed networks. In terms of indicator visualisation, the operator's energy-efficiency management system can display not only indicators at the site and network and operation layers, but also the available resources of the domain-based network, such as the RAN, backhaul and core, to support the formulation and delivery of energy-efficiency optimisation policies.

The basic principle of measuring cross-sectoral energy efficiency is simple, which is to determine how much energy is needed to deliver one unit of output. Measuring energy efficiency for cellular networks, however, is more complex, as the output of the industry is continuously changing: in the 2G era, the output was mainly voice and SMS; in the 3G and 4G eras it was voice, data traffic and SMS; and in the 5G era, the range of offered services has branched out even more. Because of this variety in cellular and digital services, there is no one way to measure energy efficiency with just a single KPI, especially because operators are running multi-generational networks, often 2G, 3G and/or 4G in combination with 5G.

³ A blueprint for green networks, GSMA Intelligence, 2022

In the case of a mobile operator, energy efficiency can also be interpreted at different levels. Different metrics can be more suitable, depending on if the focus is on one piece of equipment, a site, the whole network or even the entire operation of a mobile operator.

Overall, measuring, comparing and benchmarking energy efficiency in the 5G era is a complex task. Multi-generational (2G, 3G, 4G and 5G) mobile networks are operating in different social and geographical environments, and separating energy from 2G, 3G, 4G, 5G and fixed services can be challenging without an all-encompassing, real-time metering system. GSMA Intelligence published a report, 4 which further elaborates on this issue and the different levels of energy efficiency.

The value of partnerships

Building partnerships is essential for operators to improve their energy efficiency. While partnerships between mobile operators are valuable, cross-industry partnerships are also vital for a number of different reasons. Cross-industry partnerships and collaborations can help operators to share the latest, most advanced technologies and processes while also providing access to knowhow. Teaming up with startups can help to boost innovation and test new, more energy-efficient technologies. Partnerships can also help to exploit synergies, such as some industries' waste being a resource somewhere else. A good example is the heat generated by telecoms equipment: while mobile operators are keen to get rid of the heat generated by their equipment, many other industries would like to produce or purchase heat more efficiently. Thus, partnerships can help to connect the demand for heat and the excess heat, and to form new collaborations, such as a utility provider buying the extra heat generated from an operator's data centre and using this for commercial or industrial facilities.

Energy sourcing, transportation and optimisation can all fall outside of an operator's comfort zone. Operating advanced energy management tools requires specific expertise and the use of cutting-edge optimisation methods demands a unique skill set. Even larger operators may not have the required talent, knowledge and/or capacity to execute the necessary transformation, which would endanger their long-term competitiveness. Partnering with utility or energy management companies, tech startups or governments can therefore be essential for acquiring knowledge, buying resources or having smooth capex cycles with energy-saving-as-a-service business models.

The addressable market is significant for green solutions in the telecoms sector and this includes opportunities for smaller vendors. Companies from the energy sector should tailor their offerings to the unique needs of operators. Network vendors can also benefit from working with energy suppliers and energy management companies or building their own energy-efficiency product portfolio. Partnerships across the ecosystem will be key to achieving improved energy efficiency.

Climate targets

In February 2019, the GSMA Board, comprising members from the largest mobile network operators in the world, set a milestone ambition to transform the mobile industry to reach net-zero carbon emissions by 2050 at the latest. This action by the mobile industry made it one of the first sectors in the world to set such an ambitious target and also put it ahead of all major world economies in setting this goal. It is not the first time the sector has shown leadership in sustainable development: in 2016, the mobile industry was the first sector to commit to the United Nations 17 Sustainable Development Goals (SDGs).

⁴ A blueprint for green networks, GSMA Intelligence, 2022

Going green: benchmarking the energy efficiency of mobile networks (second edition)

In 2021, the GSMA made the first assessment of how the mobile industry is progressing against the ambition to be net zero by 2050. In 2022, the GSMA published a report⁵ which concluded that the industry continues to align around the 1.5°C decarbonisation pathway. By the end of 2022, 50 operators, representing 61% of the industry by revenue and 42% by connections, had committed to rapidly cutting their emissions over the next decade. This is an increase of 19 operators since 2021. A considerable proportion of operators have also committed to net-zero targets by 2050 or earlier.

The mobile industry is also seeing higher levels of climate disclosure. This is both in terms of the number of operators and key suppliers disclosing their climate impact and the level of detail within their disclosures. Globally, 79% of operators by revenue and 66% by connections disclose their climate impacts. According to the GSMA's Mobile Net Zero 2022 report, 6 mobile operators that scored the worst classification have improved their ratings significantly in recent years.

⁵ Mobile Net Zero: State of the Industry on Climate Action 2022, GSMA, 2022

⁶ ibid.

5. How to get involved

Decarbonisation and sustainability will continue to be a key strategic priority area for the telecoms sector over the next decade as operators play their part in the global response to climate change. A sustainable approach also helps to foster innovation and engender enthusiasm and loyalty from employees, customers and suppliers. Mobile operators are increasingly placing a green agenda at the heart of their business strategies, driving the wider industry's contribution to the SDGs. To support these aspirations, GSMA Intelligence will continue to run an extended version of a similar energy efficiency benchmarking activity in 2023, based on new 2022 data.

However, to make the results as representative and impactful as possible across all regions, we would like to increase the range of participating operators. In addition to public-facing research and best practice guidelines, participating operators will receive customised reports on their own network energy efficiency compared to industry averages on an anonymised basis.

For more information on the Mobile Energy Efficiency Benchmarking 2023 project or to be involved directly, please contact any of the following individuals:

Emanuel Kolta
Project Lead, GSMA Intelligence
ekolta@gsma.com

Tim Hatt
Head of Research and Consulting, GSMA Intelligence
thetato.com

Steven Moore Head of Climate Action, GSMA smoore@gsma.com

Appendix

Normalisation

Regression analysis produces a set of results that enable a mathematic equation to be written to explain the relationship. With this equation, we can calculate the theoretical energy per connection for a network, using the network's values for each of the independent variables. Subtracting the network's actual value from the theoretical value gives a measure of whether the network is overperforming or underperforming. This approach can be extended to multiple networks.

Without the normalisation process, the efficiency ratios would be compared to an industry average. This could be misleading since many other impacts would be included that are not the responsibility of the mobile network operators. For example, just because a network is located in a warm climate with a consequent high demand for air-conditioning does not necessarily translate to a poor energy efficiency reading.

Energy per connection (kWh)

Network A actual Network A theoretical Industry average

Cooling degree days

Network A actual Network A theoretical Industry average

Figure A1: Actual versus theoretical energy consumption

Source: GSMA Intelligence

Key factors influencing energy efficiency

After testing several potential explanatory variables, three non-network factors were identified to normalise the data. GSMA Intelligence aimed to extract those factors outside an operator's control from the original energy per unit of traffic value. These three variables enable us to normalise the result from three different angles:

Going green: benchmarking the energy efficiency of mobile networks (second edition)

- **Network traffic**: The average monthly mobile data traffic per mobile subscriber during 2021.
- **Climate**: A cooling degree day (CDD) is a measurement designed to quantify the demand for energy needed to cool buildings.
- **Network density**: The number of connections per cell site. The average size of the area that the cell site covers has an impact on energy efficiency/consumption. This measure accounts for population density, market share and topology.

Thanks to the subtraction of these different variables, the real network-related attributes come to the forefront in the benchmarking.

The result of the benchmarking gives us a diverse picture: top performers can be found in different regions; network efficiency does not directly correlate with how developed a market is; and there is a difference of 20× between the worst and best performers.

Glossary

AI - Artificial intelligence

BSS - Business support system

CDD - Cooling degree day

FWA - Fixed wireless access

GB - Gigabyte

kWh - Kilowatt hour

MW - Megawatts

MWh - Megawatt hour

NR - New radio

OSS - Operation support system

RAN - Radio access network

SDG – Sustainable Development Goal

gsmaintelligence.com